skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Regmi, Kamesh C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hemibiotrophic fungi in the genus Colletotrichum employ a biotrophic phase to invade host epidermal cells followed by a necrotrophic phase to spread through neighboring mesophyll and epidermal cells. We used serial block face-scanning electron microscopy (SBF-SEM) to compare subcellular changes that occur in Medicago sativa (alfalfa) cotyledons during infection by Colletotrichum destructivum (compatible on M. sativa) and C. higginsianum (incompatible on M. sativa). Three-dimensional reconstruction of serial images revealed that alfalfa epidermal cells infected with C. destructivum undergo massive cytological changes during the first 60 h following inoculation to accommodate extensive intracellular hyphal growth. Conversely, inoculation with the incompatible species C. higginsianum resulted in no successful penetration events and frequent formation of papilla-like structures and cytoplasmic aggregates beneath attempted fungal penetration sites. Further analysis of the incompatible interaction using focused ion beam-scanning electron microscopy (FIB-SEM) revealed the formation of large multivesicular body-like structures that appeared spherical and were not visible in compatible interactions. These structures often fused with the host plasma membrane, giving rise to paramural bodies that appeared to be releasing extracellular vesicles (EVs). Isolation of EVs from the apoplastic space of alfalfa leaves at 60 h postinoculation showed significantly more vesicles secreted from alfalfa infected with incompatible fungus compared with compatible fungus, which in turn was more than produced by noninfected plants. Thus, the increased frequency of paramural bodies during incompatible interactions correlated with an increase in EV quantity in apoplastic wash fluids. Together, these results suggest that EVs and paramural bodies contribute to immunity during pathogen attack in alfalfa. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license . 
    more » « less
  2. We used serial block-face scanning electron microscopy (SBF-SEM) to study the host–pathogen interface between Arabidopsis cotyledons and the hemibiotrophic fungus Colletotrichum higginsianum. By combining high-pressure freezing and freeze-substitution with SBF-SEM, followed by segmentation and reconstruction of the imaging volume using the freely accessible software IMOD, we created 3D models of the series of cytological events that occur during the Colletotrichum–Arabidopsis susceptible interaction. We found that the host cell membranes underwent massive expansion to accommodate the rapidly growing intracellular hypha. As the fungal infection proceeded from the biotrophic to the necrotrophic stage, the host cell membranes went through increasing levels of disintegration culminating in host cell death. Intriguingly, we documented autophagosomes in proximity to biotrophic hyphae using transmission electron microscopy (TEM) and a concurrent increase in autophagic flux between early to mid/late biotrophic phase of the infection process. Occasionally, we observed osmiophilic bodies in the vicinity of biotrophic hyphae using TEM only and near necrotrophic hyphae under both TEM and SBF-SEM. Overall, we established a method for obtaining serial SBF-SEM images, each with a lateral ( x-y) pixel resolution of 10 nm and an axial ( z) resolution of 40 nm, that can be reconstructed into interactive 3D models using the IMOD. Application of this method to the Colletotrichum–Arabidopsis pathosystem allowed us to more fully understand the spatial arrangement and morphological architecture of the fungal hyphae after they penetrate epidermal cells of Arabidopsis cotyledons and the cytological changes the host cell undergoes as the infection progresses toward necrotrophy. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license . 
    more » « less